amazon payment services
N

PHP SDK Developers
Guide

Amazon Payment Services

Table of Contents

1.
2.
a)
b)
c)
3.
4,
a)
b)
c)
d)

e)

a)
b)
c)
d)
e)
f)
6.
a)
b)
c)

7.

b)
c)
8.
9.
10.
11.

ADOUL this dOCUMEBNT ...ttt ettt e b e bt e e b e b e sbeesbeesbeesneenes 3
LN = < = AT] =] o F N 3
INSTAll PHP SDK PaCKAEE...iiiitiiei it cctiee ettt sttt et e e et e e s s tee e e st ee e e e sate e e e s baae e ennbaaeesareeas 3
Merchant CONFIGUIATIONuiiii e eee e et re e e e eate e e e s atee s eenbaeeesnsenas 3
Payment data CONFIGUIATIONc.uiii ittt e e e te e e e e ba e e e e ntae e e enraeas 4
Y 0 1= o 1 1Y USRS 6
MaIiNTENANCE OPEIATIONSuviiiiiiiiiiiiiiiiiiererete ettt e reteeeteeeeeeetaeaaeesasaesesasssssssssssssssssssssssssssssnnnnnnnsnnes 7
(O] o1 (U] IO PSP PP P PPPPPPPP 7
RETUNG ...ttt ettt b e s bt e s bt e bt e s bt e s bt e sbeesheesheesaeesbeesbeesmeesaeesanenas 7
V00 ettt ettt e e h e e e st e e s b e e e he e e he e e ehte e e bt e s beeebeeebeeeaneeesareesareenn 8
CEECK STATUS. ..ottt sttt ettt et st st s bt st et e e et e r e s r e s n e e n e neere s 8
INSEAIIMENTS PLANS ...ttt sttt b e s bt e s bt e saeesaeesmeesmeesmeesanesanenas 9
TaTa=T=d = Ta o] o @ o =1 oY o= USRS 10
REOITECT .. teetee ettt ettt et e s bt s bt e st e e s bt e s bt e e bteesubeesabeesabeeebe e e sbeeasbeesaseesabeeeneeenns 10
RedireCt INSLAlIMENTS ..o et 11
StANAArd ChECKOUL ..c.eeiiiiiieeeee ettt st st sttt st esane e 11
Standard Checkout INSTallMENTS........oouiiiiiee e e 12
CUSTOM ChECKOUL ...ttt st e e sane e 12
Custom Checkout INStalIMENTES.......cocuiiiieee et 13
FAY o] o] LI o VA L A=Y == Lo o U URRNE 14
Fa o] o] 1ol o= Y = TV o o PP UP 14
APPIE Pay ValidatioNncciciiiie et e e e e eba e e e et e e e e bee e e earreas 15
FAY o o] 1ol 2= YA oY '] 4 =1 o KPS 15
TrUSEEA ChanNEIscoeeieeeee e e sttt b e e sae e sar e sabe e eareeeaneeesmneesareenn 17
1Y/ @ 2 1 T PP PP TP TP PN 17
0T ol ¥ o o] o= PP TP N 18
THUSTE .ttt e st e st e s b e e e bt e e b et e s a e e e s b et s be e e ne e e ne e e neeesaree s reeenne 19
ST o T g =N - [T |1 oSS UPRPR 20
1531 1Y, [To £ S SPRPPSPNt 21
WEDNOOK. ...ttt st st b e sttt et sttt st et st saeeeare e 23
o] g ol To [T PO T O PSOPRTOPSUPROPRNt 23

2014 — 2023 Amazon Payment Services 2

PHP SDK Developers Guide

Amazon Payment Services PHP SDK Developers Guide

1. About this document

This document describes how to integrate the PHP SDK into your solution.

2. Integrations steps

a) Install PHP SDK Package

Install the PHP SDK Package from or of ? your solution with composer or download it from the
GitHub repository and then run the composer update command in terminal to install all the
dependencies.

b) Merchant configuration

As a merchant you need to send to the gateway some properties (Figure 1). These properties must
be put into an array and set with the following method (Figure 2). If you want integration with Apple Pay
all the properties that contains “Apple_

2

" must be added, otherwise those properties are not required.

Figure 1 All the merchant configuration properties

2014 — 2023 Amazon Payment Services

Amazon Payment Services PHP SDK Developers Guide

APSMerchant: : setMerchantParams (
Figure 2 The method used for setting the merchant configuration

c) Payment data configuration

As a merchant you need to send to the gateway the payment details (Figure.3). These details must
be put into an array and set within the “setPaymentData” method (Figure 4). The “merchant_reference”
is the customer order number, in Figure 3 you can see an example of order number.

.rand (

Figure 3 All the payment details properties

2014 — 2023 Amazon Payment Services

Amazon Payment Services PHP SDK Developers Guide

In Figure 4 you can see how the credit card redirect payment method is used. Payment data is
set with the payment details, then set the authorization/purchase command, set your callback URL and
render the information needed for your client page.

(CCRedirect ())
->setPaymentData (
->useAuthorizationCommand ()
->setCallbackUrl (
->render ([

->getMessage ()

(CCRedirect ())
->setPaymentData (
->usePurchaseCommand ()
->setCallbackUrl (
->render ([

1)

} (APSException

->getMessage ()

}

</div>

Figure 4 Credit card redirect payment method

2014 — 2023 Amazon Payment Services

Amazon Payment Services PHP SDK Developers Guide

3. Payment flow

Below we can see a high-level diagram with the important systems which are involved in the
payment flow:

Webhook notification s——

3DS provider —

Redirection response

———————————————HTTP FOrm post =3
Redirection —f

Amazon Payments Services

Response
ESPONSE »pi call

SDK functions

Merchant l§—— SDK response

Merchant se

Merchar ApplePay

Redirection

Figure 5 Payment flow diagram
In the above picture the Merchant will use the SDK in the following situation:

e Get the HTML Forms necessary to initiate one payment integration (Redirect, Standard
iframe checkout or Custom checkout)

e Make an API call to APS through the APS SDK for completing the payment process
(Authorization/Purchase) and maintenance operations (Capture/Void/Refund)

e Validate the webhook notification and signature sent by the payment gateway

2014 — 2023 Amazon Payment Services 6

Amazon Payment Services PHP SDK Developers Guide

4. Maintenance Operations

All maintenance operations provided by the PHP SDK can be found on “/maintenance.php” tab.

a) Capture
An operation that allows the Merchant to capture the authorized amount of a payment. For more
details, regarding parameters check the following link: Capture Operation.

= (PaymentCapture ()) —>paymentCapture (
[]
(APSException) |
->getMessage ()

Figure 6 Capture operation

b) Refund
An operation that returns the entire amount of a transaction, or returns part of it, after a

successfully capture operation is done. For more details regarding parameters check the link: Refund
Operation.

= PaymentRefund ()) -—>paymentRefund (
[]

xception) |

->getMessage ()

</div>

Figure 7 Refund operation

2014 — 2023 Amazon Payment Services

https://paymentservices-reference.payfort.com/docs/api/build/index.html#capture-operation
https://paymentservices-reference.payfort.com/docs/api/build/index.html#refund-operation
https://paymentservices-reference.payfort.com/docs/api/build/index.html#refund-operation

Amazon Payment Services PHP SDK Developers Guide

¢) Void
An operation that allows you to cancel the authorized amount after you have sent a successful
authorization request. For more details, Void Operation.

= PaymentVoidAuthorization ())
—>paymentVoid ()
[]
(APSException) |
->getMessage ()

Figure 8 Void operation

d) Check Status

In case you need to verify the status of a transaction in progress you can do it by using the Check
Status method. For more details, Check Status Operation.

PaymentCheckStatus ())
—->paymentCheckStatus (

[]
ption) |

->getMessage ()

Figure 9 Check status operation

2014 — 2023 Amazon Payment Services

https://paymentservices-reference.payfort.com/docs/api/build/index.html#void-authorization-operation
https://paymentservices-reference.payfort.com/docs/api/build/index.html#check-status

Amazon Payment Services PHP SDK Developers Guide

e) Installments Plans
In case you need to see the installments plans you can do it by using the Get Installments Plans
method. For more details, Get Installments Plans Operation.

= InstallmentsPlans ())
->getInstallmentsPlans (

print r(

(APSException
->getMessage ()

Figure 10 Get installments plans operation

2014 — 2023 Amazon Payment Services

https://paymentservices-reference.payfort.com/docs/api/build/index.html#get-installments-plans-api

Amazon Payment Services PHP SDK Developers Guide

5. Integration Channels

The method which returns the form post which needs to be added in the html page, is called
“render”. This method is found in the “FrontEndAdapter” class, this class is inherited by all the payment
options.

a) Redirect
The class for Redirect payment option is called “CCRedirect”. This class can be used for
Authorization or for Purchase command. For example, see the code below (Figure. 11.).

(CCRedirect ())
->setPaymentData (
->useAuthorizationCommand ()
->setCallbackUrl (
->render ([

->getMessage ()

(CCRedirect ())
->setPaymentData (
->usePurchaseCommand ()
->setCallbackUrl (

APSException

->getMessage ()

Figure 11 Render Html form post for redirect payment option

2014 — 2023 Amazon Payment Services 10

Amazon Payment Services PHP SDK Developers Guide

b) Redirect Installments
The class for Redirect Installments payment option is called “InstallmentsCCRedirect”. This class can
be used for Purchase command. For example, see the code below (Figure 12).

)

->setPaymentData
->setCallbackUrl
->render ()
(APSException

(InstallmentsCCRedirect ())
(
(

->getMessage ()

Figure 12 Render Html form post for redirect installments payment option

c) Standard Checkout
The class for Standard Checkout payment option is called “CCStandard”. This class can be used for
Authorization or for Purchase command. For example, see the code below (Figure 13).

(CCStandard ())
->setPaymentData (
->useAuthorizationCommand ()

-setCallbackUrl (

ender ([

1)
(APSException
->getMessage ()

(CCStandard ())
->setPaymentData (
->usePurchaseCommand ()

>setCallbackUrl (
->render ([

1)

(APSException

->getMessage ()

Figure 13 Render Html form post for standard checkout payment option

2014 — 2023 Amazon Payment Services 1

Amazon Payment Services PHP SDK Developers Guide

d) Standard Checkout Installments
The class for Standard Installments payment option is called “InstallmentsCCStandard”. This
class can be used for Purchase command. For example, see the code below (Figure 14).

)

->setPaymentData
->setCallbackUrl
->render ()
(APSException

(InstallmentsCCStandard())
(
(

->getMessage ()

Figure 14 Render Html form post for standard installments payment option

e) Custom Checkout
The class for Custom Checkout payment option is called “CCCustom”. This class can be used for
Authorization or for Purchase command. For example, see the code below (Figure 15).

(CCCustom ())
->setPaymentData (
->useAuthorizationCommand ()

-setCallbackUrl (

ender ([

1)
(APSException
->getMessage ()

(CCCustom())
->setPaymentData (
->usePurchaseCommand ()

>setCallbackUrl (
->render ([

1)

(APSException

->getMessage ()

Figure 15 Render Html form post for custom checkout payment option

2014 — 2023 Amazon Payment Services 12

Amazon Payment Services PHP SDK Developers Guide

f) Custom Checkout Installments

First step to work with Custom Installments payment option you need to get the installments plans
with the “getInstallmentsPlans” method which is defined in “InstallmentsPlans” class. See Maintenance
Operation Installments Plans section for more details.

The second step to work with Custom Installments payment option is to handle the installments
plans that the customer will select from the interface and get the selected plan code and issuer code to
set them in session in order to be used at purchase.

The class for Custom Installments payment option is called “InstallmentsCCCustom”. This class can
be used for Purchase command. For example, see the code below (Figure 16).

sion commit ()

Installment Custom ())
->setPaymentData (
->setCallbackUrl (
->render (

[

]
)
(APSException
->getMessage ()

Figure 16 Render Html form post for custom installments payment option

2014 — 2023 Amazon Payment Services 13

Amazon Payment Services PHP SDK Developers Guide

6. Apple Pay Integration

a) Apple Pay Button

The class for Apple Pay payment option is called “ApplePayButton”. This class can be used for
Authorization or for Purchase command. First you need to set extra parameters for payment data, see
Figure 17.

Figure 17 Apple Pay extra parameters

Now you can call the Apple Pay class to create the button for payment. For example, see the
code below (Figure 18). See merchant configuration for Apple Pay here.

(ApplePayButton ())
->setPaymentData (

->setDisplayName (
->setCurrencyCode (
->setCountryCode (
->setSupportedCountries (
[
)

->setSupportedNetworks (
[

)
->setValidationCallbackUrl (
->setCommandCallbackUrl (

)
->render ()
(APSException
->getMessage ()

Figure 18 Apple Pay button usage

2014 — 2023 Amazon Payment Services 14

Amazon Payment Services PHP SDK Developers Guide

b) Apple Pay Validation
After the payment is initialized, you need to validate the session. You can validate the session by
setting the validation callback that will trigger your validation handler.

PaymentApplePaySession ()) ->applePayValidateSession (

xception
e d

->getMessage ()

Figure 19 Apple Pay validation

c) Apple Pay Commands
After validation you now can make an authorization or a purchase command. You can do that by
setting the command callback that will trigger your command handler.

See Figure 20 and Figure 21 for more details.

header (

= PaymentApplePayAps ())
->applePayAuthorization ()

(APSException
e

sponse code (

->getMessage ()

Figure 20 Apple Pay authorization

2014 — 2023 Amazon Payment Services 15

Amazon Payment Services PHP SDK Developers Guide

(PaymentApplePayAps ())
->applePayPurchase ()

->getMessage ()

Figure 21 Apple Pay purchase

2014 — 2023 Amazon Payment Services 16

Amazon Payment Services PHP SDK Developers Guide

7. Trusted Channels

a) MOTO
MOTO channel enables you to process a range of transactions that do not follow the standard online
shopping workflow. For example, your customer may want to pay you offline. By sending an order in the

post, by calling you, or indeed in a face-to-face transaction. You can process offline transactions using
the MOTO channel.

Note that the MOTO (Mobile Order/ Telephone Order) channel allows you to process MOTO
transactions through the Amazon Payment Services APl only if you have already established a token for
your customer’s payment card.

In Figure 22, you can see how to implement the recurring operation. You need to know the token
name of the transaction and to set it to the payment data object. If the token name is not known then
the credit card details like card number, expiry date and security code are required to be set to the
payment data object.

For more details, Moto Operation.

| | | I
vV V V

>
>
>

PaymentMoto ()) —>paymentMoto (
[]

->getMessage ()

</div>
Figure 22 Moto operation

2014 — 2023 Amazon Payment Services 17

https://paymentservices-reference.payfort.com/docs/api/build/index.html#moto-channel-moto-request

Amazon Payment Services PHP SDK Developers Guide

b) Recurring
You can effortlessly configure secure, recurring payments for any defined billing cycle — whether

daily, weekly, monthly, or annual. You do so through a workflow that is not much different from the
normal checkout process.

In Figure 23, you can see how to implement the recurring operation. You need to know the token
name of the transaction and to set it to the payment data object. If the token name is not known then
the credit card details like card number, expiry date and security code are required to be set to the
payment data object.

For more details, Recurring Operation.

PaymentRecurring ()) ->paymentRecurring (

[]
(APSException
->getMessage ()

Figure 23 Recurring operation

2014 — 2023 Amazon Payment Services 18

https://paymentservices-reference.payfort.com/docs/api/build/index.html#recurring-request

Amazon Payment Services PHP SDK Developers Guide

c) Trusted

If you are a PCl-certified merchant, you can collect your customers’ credit card details on your
checkout page and store the sensitive payment card data on your server. Read more about PCI
compliance here.

PCl-compliant merchants can use the Amazon Payment Services trusted channel to submit payment
card details so that Amazon Payment Services can execute transactions using the payment card details
or token name. In the payment data object, you need to specify the “eci” property with the one of the
following options: MOTO, RECURRING or ECOMMERCE.

= PaymentTrusted ()) —>paymentTrusted (
(is_string()) |

{

print r(

(APSException
->getMessage ()

Figure 24 Trusted operation

2014 — 2023 Amazon Payment Services 19

https://paymentservices.amazon.com/docs/EN/37.html
https://paymentservices.amazon.com/docs/EN/37.html

Amazon Payment Services PHP SDK Developers Guide

8. Response Handler

To handle the response for payment methods we have implemented the “ResponseHandler” class
which takes the initial payment data.

This class also has the following methods for a proper response handling:

e validate

® process

e onSuccess (has a callback to handle the success case)
e onError (has a callback to handle the error case)

e onHtml

e handleResponse

e getResult

ResponseHandler ())
->onSuccess ((APSResponse
—->onError (APSResponse
->onHtml (

APSResponse
) {...})
->handleResponse ()
(APSException {

->getMessage ()

Figure 25 Response handler usage on redirect page

2014 — 2023 Amazon Payment Services 20

Amazon Payment Services PHP SDK Developers Guide

9. 3DS Modal

The PHP SDK provides you with the code for handling the 3ds secure part. After calling Authorization
or Purchase command, you get the response from the gateway. In the response, you can get the 3DS
Secure URL which needs to be used with the modal provided by the SDK by calling the method “render”
found in “Secure3dsModal” class. In this case the method needs a parameter called “3ds_url” that will
be set with the obtained URL.

o

Secure3dsModal ()) =>render ([

Figure 26 Secure 3ds modal usage

Implicitly Standard, Custom, Installments Standard and Installments Custom payment methods
has 3ds. In the redirect page, we need to handle it with a redirect to your success and fail page.

In “onHtml” callback function we need to handle the Standard and Installments Standard

payment methods because they use an iframe for credit card details, so after that we redirect them to
the 3ds url.

ResponseHandler (
->onSuccess (

->getRedirectParams ()

->onkError (
—>onHtml (

APSResponse

(->isStandardImplementation()) {
header (. ->get3dsUrl ())

} {

}
})
->handleResponse ()
(APSException) |

->getMessage ()

Figure 27 Payment method success case

2014 — 2023 Amazon Payment Services 21

Amazon Payment Services

PHP SDK Developers Guide

ResponseHandler (
->onSuccess (
->onError (

header (

})
->onHtml (

APSResponse

->handleResponse ()
(APSException)

->getRedirectParams ()

->isStandardImplementation()) {
->get3dsUrl ())

->getMessage ()

Figure 28 Payment method error case

2014 — 2023 Amazon Payment Services

22

Amazon Payment Services PHP SDK Developers Guide

10. Webhook

To handle the request received from the payment gateway you have a method called
“getWebhookData” which you can find in “WebhookAdapter” class. This method validates the payment
data response and returns it.

= WebhookAdapter: :getWebhookData ()

(APSException) |
Logger: :getInstance () ->info (

->getMessage ()

Figure 29 Webhook usage

11. Error codes

Error code Description

1001 APS server to server call failed

1002 APS server to server call response signature failed
1003 APS parameter missing

1004 APS payment adapter missing

1005 APS template file missing

1006 APS callback missing

1007 APS token name missing

1008 APS response signature missing

1009 APS payment method not available

1010 APS invalid type

1011 APS invalid parameter

2001 Apple Pay url missing

2002 Apple Pay url invalid

2003 Apple Pay validation callback url missing
2004 Apple Pay command callback url missing
3001 Response no signature found

4001 Merchant config missing

4002 Merchant config merchant id missing

4003 Merchant config access code missing

4004 Merchant config sha request phrase missing
4005 Merchant config sha response phrase missing
4006 Merchant config sha type missing

5001 Payment data config missing

5002 Payment data merchant reference missing
5003 Payment data amount missing

2014 — 2023 Amazon Payment Services 23

Amazon Payment Services PHP SDK Developers Guide

5004 Payment data currency code missing

5005 Payment data language missing

5006 Payment data customer email missing

5007 Payment data country code missing

5008 Payment data subtotal missing

5009 Payment data shipping missing

5010 Payment data discount missing

5011 Payment data tax missing

6001 Merchant config apple merchant id missing

6002 Merchant config apple access code missing

6003 Merchant config apple supported networks
missing

6004 Merchant config apple supported countries
missing

6005 Merchant config apple sha request phrase
missing

6006 Merchant config apple sha response phrase
missing

6007 Merchant config apple sha type missing

6008 Merchant config apple display name missing

6009 Merchant config apple domain name missing

6010 Merchant config apple certificate path missing

6011 Merchant config apple certificate key path
missing

6012 Merchant config apple certificate key pass
missing

6013 Merchant config sandbox not specified

7001 Webhook parameters empty

7002 Webhook json invalid

7003 Webhook signature invalid

2014 — 2023 Amazon Payment Services 24

	1. About this document
	2. Integrations steps
	a) Install PHP SDK Package
	b) Merchant configuration
	c) Payment data configuration

	3. Payment flow
	4. Maintenance Operations
	a) Capture
	b) Refund
	c) Void
	d) Check Status
	e) Installments Plans

	5. Integration Channels
	a) Redirect
	b) Redirect Installments
	c) Standard Checkout
	d) Standard Checkout Installments
	e) Custom Checkout
	f) Custom Checkout Installments

	6. Apple Pay Integration
	a) Apple Pay Button
	b) Apple Pay Validation
	c) Apple Pay Commands

	7. Trusted Channels
	a) MOTO
	b) Recurring
	c) Trusted

	8. Response Handler
	9. 3DS Modal
	10. Webhook
	11. Error codes

